Least tail-trimmed absolute deviation estimation for autoregressions with infinite/finite variance

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least Tail-Trimmed Squares for In...nite Variance Autoregressions

We develop a robust least squares estimator for autoregressions with possibly heavy tailed errors. Robustness to heavy tails is ensured by negligibly trimming the squared error according to extreme values of the error and regressors. Tail-trimming ensures asymptotic normality and superp -convergence with a rate comparable to the highest achieved amongst M-estimators for stationary data. Moreov...

متن کامل

Least Absolute Deviation Estimation for All-Pass Time Series Models

An autoregressive-moving average model in which all of the roots of the autoregressive polynomial are reciprocals of roots of the moving average polynomial and vice versa is called an all-pass time series model. All-pass models generate uncorrelated (white noise) time series, but these series are not independent in the non-Gaussian case. An approximation to the likelihood of the model in the ca...

متن کامل

Orthogonal Least Trimmed Absolute Deviation Estimator for Multiple Linear Errors-in-Variables Model

Orthogonal least trimmed absolute deviation (OLTAD) estimator of the multiple linear errors-in-variables (EIV) model is presented. We show that the OLTAD estimator has the high breakdown point and appropriate properties. A new decimal-integer-coded genetic algorithm(DICGA) and Fast-OLTAD method for solving OLTAD estimators are also proposed. Computational experiments of the OLTAD estimator of t...

متن کامل

Analysis of least absolute deviation

The least absolute deviation or L1 method is a widely known alternative to the classical least squares or L2 method for statistical analysis of linear regression models. Instead of minimizing the sum of squared errors, it minimizes the sum of absolute values of errors. Despite its long history and many ground-breaking works (cf. Portnoy and Koenker (1997) and references therein), the former has...

متن کامل

Weighted Least Absolute Deviation Lasso Estimator

The linear absolute shrinkage and selection operator(Lasso) method improves the low prediction accuracy and poor interpretation of the ordinary least squares(OLS) estimate through the use of L1 regularization on the regression coefficients. However, the Lasso is not robust to outliers, because the Lasso method minimizes the sum of squared residual errors. Even though the least absolute deviatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2018

ISSN: 1935-7524

DOI: 10.1214/18-ejs1390